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NASA Workshop on the Automation of Time

Series,

Signatures, and Trend Analysis

May 12, 1993

Philip Laird and Robert Shelton, Coordinators

This workshop was conceived as an outgrowth of a project to automate the monitor-

ing of signatures acquired from shuttle telemetry. During preliminary discussions held in

December 92, it became clear that even for the task at hand--a scientifically straight for-

ward pattern recognition problem--there were a relatively large number of techniques which

had been considered and/or used for similar projects within NASA, defense, and the pri-

vate sector. The related issues of trend analysis and time series prediction arose from the

discussion related to the application of certain advanced techniques from machine learning

to the signature recognition problem. In spite of the diversity of the problem domain and

proposed solutions, certain themes emerged. The common issues were data reduction, data

management, feature extraction, and, perhaps most important, integration of advanced soft-

ware architectures with data sources and end-users. Due to the criticality of this last issue of

two-sided integration, when the decision to have the workshop was made, it was decided that

unlike many purely technical and/or scientific conferences, the organizers would aggressively

recruit participation from the operations community. The final prograna reflects a diversity

of applications ranging from processing astronomical observations to tracking of problem

reports. The talks included frontier technical areas such as wavelets, neural networks and

artificiM intelligence, as well as user interfaces, data management, and foremost, needs of

our customers. Participants were drawn from eight NASA centers with an invited talk given

by Professor Andreas Weigend of the Department of Computer Science at the University of

Colorado, Boulder. A three hour segment of the conference included a llve video link among
six NASA centers for which facilities were available.

Robert Shelton,
Co-coordinator



Speakers and Coordinators for the

NASA Workshop on the Automation of Time Series,

Signatures, and Trend Analysis

May 12, 1993

Morning Session

Building N213, Room 261
NASA Ames Research Center

Robert Shelton, Chair

NASA Johnson Space Center
Mail Code PT41

Houston, TX 77058
713-483-5901

SHELTON @ GOTHAMCITY.JSC.NASA.GOV

8:30 -- 9:00

A Health Monitoring Expert System

June Zakrajsek
NASA Lewis Research Center

21000 Brookpark Rd.
Cleveland, OH 44135
216-433-7470

JUNE @ ENGLAND.LERC.NASA.GOV

9:00 -- 9:30

A Pattern Recognition Toolkit for Analyzing Signatures

in Shuttle Telemetry Data
Dave Hammen

Mitre Corp.
1120 NASA Rd. 1

Houston, TX 77058
713-335-8510

DHAMMEN@MITRE.ORG

9:30-- 10:00

Analysis of Stochastic Time Series Data

Jeff Scargle
NASA Ames Research Center

Mail Stop 245-3
Moffett Field, CA 94035-1000
415-604-6330

JEFFREY @ SUNSHINE.ARC.NASA.GOV

10:15-- 10:45

Comparison of Temporal Analysis Methods

Jay Norris
Code 668

NASA Goddard Space Flight Center/LHEAJGROSSC

2-



Greenbelt, MD 20771
301-286-3367

NORRIS @ GROSSC.DNET.NASA.GOV

10:45-- 11:15

Concept Formation in Temporally Structured Domains

Wayne Iba
Recom Technologies
NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035-1000
415-604-4721

IBA @ PTOLEMY.ARC.NASA.GOV

Afternoon Session

Building N203, Room 104
NASA Ames Research Center

(by Video Teleconference to other Centers)

Philip Laird, Chair
NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035-1000
415-604-3362

LAIRD @ PTOLEMY. ARC.NAS A. G OV

12:10-- 12:40

Results of the Santa Fe Time Series Competition

Andreas Weigend

Xerox Corp. and University of Colorado, Boulder
Xerox PARC/SSL

3333 Coyote Hill Road
Palo Alto, CA 94304

(408) 812-4765
WEIGEND @ PARC.XEROX.COM

12:40-- 1:05

Shallow and Deep Knowledge Techniques for Diagnosis of

Time Dependent Data
Steve Chien, Nicolas F. Rouquette, Richard Doyle,

Leonard K. Charest, Jr., and E. Jay Wyatt

NASA Jet Propulsion Laboratory
Pasadena, CA 91109, USA
818-306-6144

CHIEN@ AIG.JPL.NASA.GOV

1:05 -- 1:30

Neural Networks for Prediction

Claudia Meyer

Sverdrup Technology
NASA Lewis Research Center

21000 Brookpark Rd.
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Cleveland, OH 44135
216-433-7511

SPMLM @ VENUS.LERC.NASA.GOV

1:30 -- 1:55

System Trend Analysis Reduction Tool

W. Joseph EUiott

Analex Systems, Inc.
P.O. Box 21206

Kennedy Space Center, FL 32818-0206
407-861-0913

Fax: 407-861-5774

1:55 -- 2:20

Current Trend Analysis Activities at

Goddard Space Flight Center

Walt Truszkowski and Troy Ames (GSFC),

Sid Bailin and Scott Henderson (CTA Inc.)
Code 522.3

NASA Goddard Space Flight Center
Greenbelt, MD 20771
301-286-7896

WTRUSZKOWSKI.520@ POSTMAN.GSFC.NASA.GOV

2:20 -- 2:45

Predictive Information Research for Aircraft

Fault Management

Anna Trujillo
NASA Langley Research Center

Hampton, VA 23665
804-864-8047

A.C.TRUJILLO @ LARC.NASA.GOV

3:30 -- 4:30

Discussion Session

Building N213, Room 261
NASA Ames Research Center

Padhraic Smyth, Chair

Communication Systems Research, 238-420

NASA Jet Propulsion Laboratory
Pasadena, CA 91109, USA
818-306-3768

PJS@BVD.JPL.NASA.GOV
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A Health Monitoring Expert System

June Zakrajsek,
NASA Lewis

A health monitoring expert system software architecture has been

developed to support condition-based health monitoring of rocket
engines. It's frrst application is to the Space Shuttle Main Engine.

The Post-Test Diagnostic System (PTDS) runs offline, using as input

the data recorded from hundreds of sensors. The system is invoked

after a test has completed, and produces suggestions, analysis, and an

organized graphical presentation of the data with important effects
highlighted.

The analysis that is performed within the PTDS for the SSME are

feature driven. Classical techniques have been used to develop
genera/routines that detect features, such as drifts, spikes, level

shifts, erratic, excessive noise, peaks, and different-than. These

techniques provide the features required by the PTDS, but require

approximately twenty minutes of processing time, and considerable
effort in determining the feature thresholds.

The overall expert system architecture has been developed and

documented so that expert modules analyzing other components can be
easily added. The architecture emphasizes modularity, reusability,

and open system interfaces so that it may be used to analyze other
systems as well.
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PBP bistability at thrust level 65.0_
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A Pattern Recognition Toolkit for Analyzing Signatures in Shuttle
Telemetry Data

Dave Hammen

The MITRE Corporation
1120 NASA Road 1 Houston, TX

e-mail: dhammen@mitre.org

Several flight control positions examine plots of Shuttle telemetry data

on paper strip chart recorders (SCRs). These plots graphically portray
on-board activities, which helps the controllers in their decision-

making process. Controllers identify trends and events on the SCRs by

recognizing patterns in the plots. For example, the Electrical
Generation and Integrated Loading controllers deduce which electrical

equipment has been turned on or off by examining the SCR plots of

electrical current usage. The SCRs generate continuous plots, which the
controllers value, but are costly to maintain. Workstation-based SCR

emulations lack the key features (permanence, resolution, and size) of

the paper plots, making controllers reluctant to give up the paper

plots. While replacing the paper SCRs with on-screen emulations might

reduce costs, this replacement would not reduce human involvement and

cannot yet reproduce the resolution of the paper plots.

Automated signature detection and identification capabilities could

perform some of the data interpretation tasks controllers do now,

freeing the controllers to perform more important tasks. A workstation-

based SCR tool that includes such automated signature detection and

identification capabilities may reduce the need for the expensive paper
SCRs. The short-term goal of this project is to apply several pattern

recognition techniques to the electrical equipment recognition problem.

We will then move on to another controller position. By applying
pattern recognition techniques to a series of increasingly complicated

Mission Control signature identification problems, we hope to move
towards a general-purpose signature detection and identification

capability. The ultimate goal of this project is to build a pattern
recognition toolkit that will help build signature detection and

identification applications. This project is jointly funded by the
Real-Time Data System (RTDS) project and by the Software Technology

Branch (STB) at NASA's Johnson Space Center, and involves personnel from

RTDS, STB, NASA Ames Research Center, and the MITRE Corporation.
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Analysis of Stochastic Time Series Data

Jeffrey Scargle
Ames Research Center

Many astronomical objects are variable in brightness (variable

stars, active galactic nuclei, quasars, radio galaxies, galactic
X-ray sources, etc.). In some cases the variability is periodic,

but in the vast majority of those listed the variations are disordered

and unpredictable. (Note: We are here discussing real variations
in source brightness, not observational errors. Unfortunately
astronomers use the term "noise" to refer to stochastic variation,

even when it is intrinsic to the source.)

The goal of this work is to understand the physical processes

underlying the observed stochastic variations. As with most data analysis,

this is carried out by developing models of the processes and comparing
the model behavior with that of the time series data for the astronomical

objects.

To this end we have developed two classes of analysis tools:

(1) models to represent stochastic physical processes:

(a) random processes

(b) chaotic processes (chaotic dynamical systems)

(2) data analysis tools:

(a) deconvolution methods

(b) wavelet analysis; the scalegram

(c) methods for unevenly spaced data

(d) nonlinear prediction; Lyapunov exponent estimation

We present a case study in which wavelet methods were used to analyze
a long time series for the extremely active fluctuations of the X-ray

source Scorpius X-1. The serf-similar behavior detected by the use of

the scalegram (a wavelet-analog of the power spectrum) led us to consider

a class of spatially extended models called coupled map lattices (related

to cellular automata). A particular model, called the "dripping handrail,"

was singled out because it represents physical processes operating in
the accretion disks thought to be present in the astronomical objects.

The power spectra and scalegrams of time series synthesized with this
model agree very well with those of the observed time series

data. In particular, both show two features characteristic of the

variability of a class of x-ray sources including Scorpius X-l:

quasi-periodic oscillations (QPO's) and low-frequency noise (LFN).

These features were previously thought to be due to two separate mechanisms,

but we argue that they are due to a single physical process.

Bibliography:

Scargle, J. Studies in astronomical time series analysis.

I: Modeling random processes in the time domain.
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WHAT IS CHAOS?

Evolution of a Chaotic System Has these Properties:

• DISORDER: The evolution of the system appears irregular
and unpredictable.

• DETERMINISM:if initialconditions are EXACTLY the

same, the future evolution is the same.

• SENSITIVITY TO INITIAL CONDITIONS : If initial

conditions are even A TINY BIT different, the future

evolution is very different (exponential divergence).

Physical Laws

Even simple systems can be chaotic!



RANDOM PROCESS.

Realization: 17326

.32832

.89742

.07432

.:23498

.92_42

.24323

.I 1321

.56564

.23441
.57743

•CHA OTI C PROCESS

Insert Ini*ia! Value

.123456 ....

Realization:19236

32832

.89742

.07432

.23498

.92:542

.24323

.I 1321

.56564

.23441
.57743
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.(a_)One-sided:

Initial value:

---->

The Bernoulli Shift

_J_n+l =(2 Xn) rood I

X0 =.blb263b4bs...b_

Xl =.b26364bs...b.

X2= .b3b@s...bN

x3= .b4bs...b_

XN =O

.(a_)Two--sided: Xo= ...t_b-zb-_.b_b2b3...

Xl= ...b_3b-2b-1bl .b263 ...

X2= ...b_l_2l_lblb2 .b3...

h_b-2 b-lblb2b3b4bs---
ol • •

X-2= ...b-3.h-2b-Ibl b2b3b4bs

(Tim World's _ randam l:l_!)

t._.7...



map: R"n+l = 2 "Z'n - Sign('Xn) -1 _.Xn -- 1

The Map
1

X i+11

-t X II

The Time Series
1

1
n

_ty P(x) m

F_CX) = 0

Variance: o'2 = 1B

Autocarre_tion: px(k) = IB (I/2)k k=O,1,2,...

1.0
p(k)

o.o 
k

_5
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Cellular Automaton Process

Discrete states: Yn,m = 0 or 1

Dynamics: Yn+ 1,m = [Y n,m- 1 + D (Yn, m, Y n,m+ 1 )] rood2

D(x,y) =0 x= 1, y= 1
=1 otherwise

xr_uatstate:YO,O = I, YO,m = 0

tj, o



n

Time Series: Xn = _, (Yk,o -.5 )

k=0

X n

0 n 5010



Autoregressive model: R = AxX; A = C-1

A = ( ..., A-3, A-2, A-l, 1l, A1, A2, A3,... )

Rn = Xn + A1 Xn-1 + A2 Xn-2 +... (causal)

Rn = Xn + A-1 Xn+l + A-2 Xn+2 +... (acausal)

Rn =.. A-1Xn+I + Xn + A1 Xn-1 +... (mixed)

Example: A = (i1 ,A1) = (i1,-a)

Rn =Xn - aXn-1

C=( 1,a,a2,a3,a4 . . . )

Xn = Rn + aRn-1 + a2Rn-2+ a3Rn-3 ...



Moving average model" X = C * R

Xn = L C k Rn-k

k

(causal <--> k>O; acausal <--> k<O)

R

=× "i

\
• h
• i

l

\



WOLD DECOMPOSITION THEOREM

Let X be any stationary process; then

X = C_,R+D

• R is a WHITE noise process (the innovation)

° C is a causal filter (ci=o, i¢o, i.e. no output before input)

° D is a linearly deterministic process (future is
linearly predictable from past with zero mean-square-error)

• R, D stationary, not correlated with each other

• C is minimum delay

"-ID



"NONRANDOMNESS

UNCORRELATED

MARTINGALE

RANDOMNESS
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DECONVOLUTION TECHNIQUE:

Yn ,n=0, 1,2,...,N

RANDOM PROCESS I

_@m)_-: Y = R * C (convolution)

R is purely random
C is a constant pulse shape

Note that if A = (2-1 then convolving A into Y gives R:

So define R = A * Y and maximize its randomness.

I CHAOTIC PROCESS I

_Y_(_)]-_g Y = R * C (convolution)

R. is purely chaotic
C is a constant pulse shape

Note that if A = C -1 then convolving A into Y gives R.

So define R = A* Y and maximize its ... chaosity.

-/7_.



The Fundamental Problem:

• Given time series data {Xn, n = I,N}

• Estimate: the filter C

the chaotic innovation R

the recurrence function F ; Rn+ I =F(Rn, .. .)

The Solution:

Seek the filter A=(A_q ,.-.,A-2,A-I, E ,A I ,A2, -.. ,Ap)
which makes X = A*Y maximally chaotic by minimizing H;

A is then an estimate of the inverse of C; F derived by plotting

Rn+l vs. Rn, etc.

Penalty Function H(X):

Given a set of data points {X n = 1,2,...,N}:

• Construct a grid of (M+ 1)-dimensional cells in the phase space

(Xn+1, Xn, Xn_l,..., Xn_M+l )

• Plot in this space the N-M points derivable from the data

• Then define H as one of the following:

H (I) = Total volume of the cells containing data points

H (2) = _Pi log Pi (Pi" number of points in cell i)
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X 1 X2 X1 6

m=l

n=O n=2 n = 4 n= 6 n =8 n= 10 n= 12 n= 14

m=2

n = 0 n=4 n=8 n = 12

m=3

a=O n=8

m=4

n--O

Figure I- Haar wavelets for time series with 1 6 samples.

The vertical scale is arbitrary.
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1.si...... t-

I

_'5 .... |--t"
I

2 .°- .....

-3
0 1_ 200 300 400 500

Tigure 1: Signal of 512 samples built by adding chirps, truncated sinusoidal
waves and waveforms of different time-frequency Iocaiizations.

i | i

............ il_ ....................... :_: ........
-. i:_ .:::-::i_

.I:!! ...... __:, , :_::,,p;, ................................

II

:. ]:_ .. :_:::..: .:_.-
• : : ._ | .... ..::..:"

, ii ,
Fi_ure 2: Time-frequency enerl_y distribution E/(_,_) of the signal shown
in Fi&. 1. The horizontal axis is time. The vertical axis is frequency. The

highest frequencies are at the top. The darkness of this time-frequency image
increases with the value _)r(t, _s). The two straight lines are the time-frequency

trajectories of the chirps detected from the Gabor time-frequency atoms.
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I

O.5

0

-O5

-I

-I.-_

-2

o _o _o 3oo 4oo 50o

Figu_ 3: Signal obtained by adding a Gaussian white noise to the signal shown

if F_g. 1. The signal to noise ratio is 4 db.

Figm'e 4: Time-frequency energy distribution of the noisy signal shown in Fig.
4. The white noise component has an energy that is spread across the whole

time-frequency plane.
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0

-500
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Fig-_'e 5: Speech recording of the word "&reasy", sampled at 8 kHz.

: !

.._-_;.ii _i _._.

._2_: .-_."__ - " A.i..

'__"_........ , .:........, .... :....... : :_:._- .:_ ::.... _.'. .........................................

Figure 6: Time-frequency energy distribution of the speech recording shown

in Fig. 5. We see the low-frequency component of the "g", the quick burst

transition to the "ea" and the harmonics of the"ea". The "s" has an energy

distribution that is similar to a white noise.
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STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. I. MODELING

RANDOM PROCESSES IN THE TIME DOMAIN

JEFFREY D. SCARGLE

Am_ Research Center. NASA. Moffett Field

Recewed 1979 December 1O; accepeed 1980 Mar 14
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STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. III. FOURIER TRANSFORMS,
AUTOCORRELATION FUNCTIONS, AND CROSS-CORRELATION FUNCTIONS

OF UNEVENLY SPACED DATA

JEFFREYD. Soa_o_
Theoretical Studies Branch. Space Science Division. NASA-Area Rcsenrch Center

Received 1988 At_juJt 8: accepted 1989 January 24

ABSTRACT

This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorreiation func-
tion (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series
may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be
inverted to recover the original data and the sampling, is used to compute correlation functions by means of a
procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time
series not even sampled at the same set of times. Techniques for removing the distortion of the correlation
functions caused by the sampling, determining the value of a constant component to the data, and treating
unequallyweighteddata are alsodiscussed.FORTRAN code for theFouriertransformalgorithmand numerical

examples of thetechniquesare given.

Subjectheadings:analyticalmethods -- BL Lacenae objects-- numericalmethods

I. THE PARADOX OF CORRELATION FUNCTIONS WITH UNEVENLY

SAMPLED DATA

Correlation functions are useful time series analysis tools.
They yield physical information such as the time scale of a
process or the time delay between two related processes. But
astronomicaltime seriesdata are oftenunequallyspaced in

time,due to a varietyofpracticalconsiderations.(The times
may be irregular,or they be evenlyspaced but with missing

observatious--"gaps.")Such unevenness produces a funda-
mentaldifficultyintheestimationofcorrelationfunctions,the
resolutionofwhich isthemain pointofthispaper.

For data X, = X(t.)sampled at evenlyspaced times t,=
(n- OAt,n --I,2.....N thetraditionalestimatoroftheauto-
correlationfunctionis

N-t

p_4k)= (I/N) Y.x.x.+,. (I i)
roll.

This expression makes sense only if the sample times t, are
evenlyspaced,sinceitcan be thoughtofasa kindofvectordot
product ofX with X shiftedin time by k.The timesof the
shifteddata must match up with thoseof the unshifteddata.

Thereforethesamplingintervalmust beconstantand thelagk
must bean integermultipleofthisinterval.

How should one estimatethe ACF of unevenly sampled

data? Possibleapproachesare tointerpolatethedata toeven
spacing and use equation (I.l),or to sum product-pairs

X(t,)X(ts)inbinsofthelagtt- ts(Mayo, Shay,and Riter1974:
Edeisonand Krolik 1988).Gastner and Roberts{1975,1977)

circumventthe factthattheinterval(t,,r,.,,3isnot a definite

lengthoftime,notingthatstatisticallyitdoes correspondtoa
fixedtime interval---namely,k dividedby themean sampling
rate.While theseproceduresmay besatisfactoryinsome appli-

cations,theyallproducesome distortionand lossofinforma-
tion.

The goal of thiswork isa correlationfunctionestimator
which usesalloftheinformationcontainedinunevenlyspaced

data. The proposed approach steps briefly into the frequency
domain (computing the power spectrum) and returns to the

time domain (computing the autocorrelation function with the
Autocorrelation Theorem). While it does not explicitly inter-
polate, it can be thought of as effecting an implicit inter-
polation in the time domain. The basic tool of the
computations is the discrete Fourier transform (§ II), which
yields the power spectrum used in the computation of the auto-
correlation function (§ III) and the cross-spectrum used to
compute the cross-correlation function (§ IV). Examples using
artificial data appear in all three of these sections. Section V
exhibits correlation functions for some actual data on BL
Lacertae---the prototype of a class of violently variable radio
sources. The FORTRAN code for computing the discrete
Fourier transform is given in Appendix A. Appendix B dis-
cusses the frequencies used in the inverse transformation. The
remaining appendices treat an underlying constant component
to the data, and unequally weighted data.

IL DLSCP.JE'I'E FOURIER TRANSFORM

This section presents an algorithm for the discrete Fourier
transform (DFT) of unevenly sampled data. Later this trans-
form will be used to estimate correlation functions, but it isof

interest in its own right and in connection with power spectra.
Scargie (1982, hereafter Paper II) modified the classical defi-

nition of the DFT in order that the resulting power spectrum
(or periodogram) of unevenly sampled data have the simple
statistical behavior which obtains in the case of even sampling
(Paper II, Appendix A), while maintaining time translation
invariance (Paper II, Appendix B). In addition, spectral
analysis using this estimator is equivalent to least-squares
fitting of sine waves to the data (Paper II, Appendix C). Paper
II dealt with power spectra, so the phase of the Fourier trans-
form was unimportant; the present work differs slightly in cor-
rectly treating the complex phase of the transform.

Press and Teukoisky (1988) give an informative discussion of
the beneficial properties of this periodogram, as well as a
FORTRAN algorithm that uses a recurrence technique to gain a
factor of 3 in speed. Further improvement is obtained with
Press and Rybicki's (1989) clever N log N algorithm.
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STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. IV. MODELING CHAOTIC AND
RANDOM PROCESSES WITH LINEAR FILTERS
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ABSTRACT

While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for
analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This
time-domain model is based on the theorem that any chaotic process can be represented as the convolution of
a linear filter with an uncorrelated process called the chaotic innovation. We also present a technique, minimum
phase-volume deconvolution, to estimate the filter and innovation. The algorithm measures the quality of a
model using the volume covered by the phase portrait of the innovation process. Experiments on synthetic
data demonstrate the following properties of the algorithm: It accurately recovers the parameters of simple
chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, dis-
tinguish them from each other, and separate them if both are present. It can also recover non-minimum-delay
pulse shapes in non-Gaussian processes, both random and chaotic.

Subject heading: numerical methods

L CHAOTIC AND RANDOM PROCF_ES

Nonlinearini_alvalueproblems oRen have solutionswhich

arc very sensitiveto initialconditions,and which seem
disordered---eventhough randomness does not appear explic-

itlyinthe equations.Very simpledynamical equationsmay
have thisproperty,calledchaos.Scientistsshould be aware
thatdata which seem random may actuallybe from a deter-

ministicchaoticprocesst̀Furthermore,chaosand randomness
can be present in the same physical system. There is thus a
need for techniques to identify and separate these two kinds of
processes.

We take a chaotic process to be one that has the following
properties: (1) disorder; (2) determinism; (3) sensitivity to
initial conditions; (4) random initial conditions; (5)correlation
function vanishes as the lag goes to infinity; (6) aperiodicity; (7)
stationarity. More precisely, for a process to be chaotic almost
all realizations must have these properties. For just as with
random processes, some realizations--a set of measure zero--
may fail to have any of thc_: properties. These interdependent
qualities are tisted to give the flavor of chaos, not as a formal
definition.

A brief discussion of these seven properties is in order. D/s-
order, or more properly apparent disorder, is most fundamental
yet most difficult to define. A chaotic process is quite ordered,
in that it obeys deterministic dynamics and is seen as such
when properly viewed in its state space. But the process mas-
querades as disordered when viewed via the time series. As we
will see, filtering is part of this masquerade. The primary goal
of this paper is to provide tools to reveal this masquerade by
simultaneously undoing the filtering and unveiling the hidden
regularity.

Determinism means that if the initial conditions are precisely
repeated, the system evolution over time is identical. But sensi.
tioity to initial conditions means that as long as there is some
difference between two initial values, no matter how small,

t A processisa procedure which generatestime series.Each applicationof

the procedure yields a time _'ries, called a realization of the prooess.

eventually the two corresponding solutions radically diverge
from each other. It is assumed that the initial conditions are

randomly chosen.
Vanishing of the correlation function ensures that the solu-

tions are truly disordered and diverge from each other never to
return. The "taffy kneading" (stretch and fold) character of the
dynamics usually supplies this feature (e.g., Bergs, Pomeau,
and Vidal 1984, Fig. VIII.8). In the important _ that the
correlation function is zero for all nonzero lags, the process is
uncorrelated or "white" chaos, in analogy to white noise.

Aperiodicity is important because even for parameter values
which place a system in its chaotic regime, the dynamical equa-
tions have periodic solutions for special initial values which
comprise a set of measure zero. Such highly ordered solutions
are not regarded as chaotic.

Stationarity means roughly that the statistical properties are
independent of time. The explicit representation of the fact that
the dynamical evolution leaves the probability distribution
(often called the invariant measure) unchanged plays an impor-
tant role in chaos theory. The initial conditions satisfy this
same probability distribution. 2 Thus one cannot separate dis-
order due to the random initial conditions from chat due to the
convoluted way in which the past determines the future--they
are manifestations of the same phenomenon, linked together
by stationarity.

Chaotic time series can be generated by solving differential
equations or by iterating return maps derived from the equa-
tions. Some problems (e.g., the evolution of generations of
animals) are inherently discrete in time and the dynamics are
completely represented by a recurrence equation. All examples
in this paper are generated from recurrence equations and time
is taken asdiscrete.

The goal of this series (Scargle 198ta, 1982, and I988, here-
after respectively Papers I, II, and III) is to provide analysis

z In principle the initial conditions can have any distribution. The process

would then be not quite stationary,and one would have to worry about

transientsand nonrepresentativ¢ behavior (such as periodicity)for special
initial valu ,',t.
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Wavelets and the Scalegram
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Abstract: This paper is intended to be a practical introduction to the use of wavelet

methods in time series analysis. After introducing the reader to wavelets, with special

emphasis on the tTaar wavelet, we review the main uses of the methods for smoothing, •

compressing, and modeling time series data. We define the wavelet aaaJog of the power

spectrum, namely the scalegrazn. We compute the scaJegram of a noisy signal, to show
how it can be corrected for the presence of both additive obervational noise and the

Poisson noise connected with the statistics of photons. We outl/ne a smoothing procedure

that is data-adaptive and should be useful for treating data that has jumps and other

discontinuities. An appendix contains computer code (in FORTRAN and MatLab) for

implementing all of the concepts of the paper: wavelet tra_usforms, scalegraxns, inverse

wavelet transforms, and ideal smoothing techniques.

1. E'_TRODUCTION: WAVELETS FOP. TIME SERIES ANALYSIS

The basic use of wavelets is the representation of an arbitrary function of time as

a superposition of elementary functions - much as in Fourier analysis. The main

difference is that the wavelets are localized in time; i.e. they do not emend over

the entire interval, as do Fourier components (sines and cosines).

From a single wavelet shape (sometimes called the analyzir_g zua_elei;) one con-

structs an orthogonal basis of functions consisting of many Copies of the basic

shape scaled and translated in time. If ¢(t) is the analyzing wavelet, then the

scaled/translated wavelets are defined as follows:

¢.,,z(_) = 2-'/2_b(2-'_ - I). (1)

where the scale inge:r, s indicates the time-duration of the wavelets. Inspection of

this equation shows that the wavelet width is proportional to

1 Theoretical Studies Branch, Space Science Division, National Aeronautics and

Space Administration, Ames Research Center

2 Department of Statistics, Stazfford University
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THE QUASI-PERIODIC OSCILLATIONS
AND VERY-LOW-FREQUENCY NOISE OF

SCORPIUS X-1 AS TRANSIENT CHAOS:
A DRIPPING HANDRAIL ?
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Abstract: We present evidence that the quasi-periodic oscillations (QPO) and very low

frequency noise (VLFN) characteristic of many accretion sources are different aspects of the

same physical process. We analyzed a long, high time resolution EXOSAT observation of

the low-mass x-ray binary (LMXB) Sco X-I. The x-ray luminosity varies stochastically on

time scales from milliseconds to hours. The nature of this variability - as quantified with

both power spectrum analysis and a new wavelet technique, the sealegram - agrees wetl with

the drippin_ handrail accretion model, a simple dynamical system which e.vdaibits transient chaos.

In this model both the QPO and VLFN are produced by radiation from blobs with a wide

size distribution, resulting from accretion and subsequent diffusion of hot gas, the density of

which is limited by an unspecified instability to lie below a threshold.

subject headings: x-rays: stars - chaotic phenomena- accretion, accretion disks - methods:

data analysis - stars: neutron

National Research Council Postdoctoral Fellow
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WAVELET SHRINKAGE AND Vv'.V.D.: A IO-MIN-_JTE TOUR

David L. Donoho

Stanford Uni_erszty

i. Introduction

With the rapid development of computerized scientific inst_rnents comes a wide va-

riety of interesting problems for data analysis and signal processing. In fields ranging from

Extragalactic Astronomy to Molecular Spectroscopy to Medical Imaging to Computer

Vision, one must recover a signal, curve, image, spectrum, or density from incomplete,

indirect, and noisy data.

Recently, it has been shown by the author and his collaborators Iain Johnstone (Stan-

ford), Gdrard Kerkyacharian (Amiens), and Dominique Picard (Pads VI D that shrinking

noisy wavelet coefficients via thresholding o/ters very attractive alternatives to existing

methods of recovering signals from noisy data. Our new methods have theoretical prop-

ezzies of adaptive m_n_m,'Lxity that far surpass anything previously known. Other groups

have independently developed methods for de-noisingwhich are also based on wawJet

thresholdingin some sense.I think here of Mallat and collaborators(Courant),Coffman

and collaborators(Yale),and Healy and collaborators(Dartmouth). These other groups

have found thaz wavelet thresholdingmethods work well in problems ranging from pho-

tographicimage reszorationto medical imaging. R.A. DeVote (South Carolina)and B.J.

Lucier (Purdue) have also come to thresholding,motivated by approximation-theoretic

arguments. This agreement of diversetheoreticaland empiricalwork isvery encouraging,

and suggeststhat waveletswillsoon have a largeimpact on how scientiststreatnoisydata.

In thisbrieftour,I willonly describethe mechanics of some wavelet shrinkagetech-

niques and give examples. Software isavailableto compute allthe displayspresentedin

thispaper;,contact the author at donoho_play'fair, sZan.forct,edu. In the discussionI

menr2on work which proves the varioustheoreticaladvantages of the new techniques.

D

Based on presentazion at the Internazional Conference on Wavelets and Applications,

Toulouse, France, June, 1992. Supported by NSF DMS 92-09130. With appreciation

to S. Roques and Y. Meyer for patience and encouragement. It is a pleasure to thank

lain Johnstone with whom many of these theoreticalresultshave been derived,and Carl

Taswetl with whom Johnstone and I have developed the software used here.
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Comparison of Temporal Analysis Methods in Search for

Cosmological Time Dilation in Gamma-Ray Bursts

J. P. Norris, Code 668

NASA/GSFC/Lt-IEA/GROSSC, Greenbelt, MD 20771

Cosmic gamma-ray bursts (GRBs) are now the longest standing mystery in
modem astronomy. They have been studied for a quarter century but a

clear indication of their nature is not yet to be established.

Bursters may be a very important astrophysical phenomenon in terms of

energetics -- fluxes can be briefly two to three orders of magnitude
higher than the all-sky background in the low- energy gamma-ray regime

(~ 25 keV - few MeV). No simultaneous detection in another waveband
has been obtained, nor have "interesting" counterparts been found

during post-burst periods (within hours to days) in several arc
minute- sized error regions. The most critical determinant for the

GRB phenomenon, the source distance distribution, is almost completely
unconstrained.

However, recent results (Meegan et al. 1992) from the Burst and

Transient Source Experiment (BATSE) on the Compton Gamma Ray
Observatory have begun to reveal a picture consistent with the

bursters being at cosmological distances. BATSE may be sampling deep

enough to see the effects of non-Euclidean space: The distribution of
more than 500 burst localizations is isotropic to within sampling

error, while the differential {Volume Observed / Volume Observable}

relation indicates that BATSE sees "the edge" of the source
distribution. This combination is most simply explained either by a

nearby (< 1 pc) heliospheric burster distribution, or by a
cosmological one (Z - unity). In fact, galactic disk populations are

ruled out, and the extended halo hypothesis is constrained to ever

larger sizes (core radius > 30 k-pc) as more BATSE bursts are recorded.

If the cosmological explanation is correct, we must observe time
dilation and redshift. Statistically, the time profiles of the most
distant sources must be dilated -- with "stretch" factor of order

{I+Z} - 2 -- relative to those of nearest sources, and their spectra

(below quasi-power-law regime, <- 100 keV) must appear "redder" by the
same factor. For time dilation, the difficulty set us by Nature is

that durations of bright bursts range over more than four orders of

magnitude (!), clustering in the range ~ 5 - 20 s. Worse, burst

profiles are notoriously complex and varied from burst to burst --

there is no standard temporal profile. In such circumstance, it is

prudent to devise an analysis procedure that utilizes the temporal

information maximally.

We describe four analysis methods for measuring the apparent time

dilation effect (Norris et al. 1993). The most efficient test -- from

an information theoretic standpoint -- completed so far is a wavelet

decomposition of the GRB time profiles. This test indicates that, on

average, dim bursts do have significantly more temporal structure than

bright bursts on all time scales where signal dominates over noise (-
2 s to 64 s). Simulations which calibrate the wavelet test indicate



thatthedimmestbursts would be at redshifts of order unity -- in

agreement with inferences from the V/Vmax relation -- ff in fact the
cause is time dilation (Norris et al. 1993). We compare the results

of this test with those of the other three, which also yield positive
indications.

For all the tests, selection effects arising from intensity

differences (factors up to ~ 300) are removed by rescaling all bursts'
intensities and associated noise biases a uniform level. Because

pulse widths in GRBs are energy-dependent (narrower at higher energy),

spectral redshift is a competing effect which must be addressed in a

(cosmologically) model-dependent manner. Means for ameliorating

various potential pitfalls of these analyses are discussed.

References

"Spatial distribution of gamma-ray bursts observed by BATSE,"
Meegan, C.A., et al. 1992, Nature, 355, p. 143.

Possible Detection of Signature Consistent with Time Dilation in Gamma-Ray

Bursts," Norris, J.P., et al., 1993, Proc. Compton Syrup., St. Louis, in press.
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TableI

Model Author Year Reference Main 2nd Place Description
# Pub Body Body

1. Colgate 1968 CJPhys, 46, S476
2. Colgate 1974 AIM, 187, 333
3. Stacker etal. 1973 Nature, 245, PS70
4. Stackar et at. 1973 Nature, 245, PS70
5. Harw_tetal. 1973 ApJ, 186, 1_37
6. Lamb et el. 1973 Nature, 246, PS52
7. Lamb at al. 1973 Nature, 246, PS52
8. Lamb et al. 1973 Nature, 246, PS62
9. Zwicky 1974 Ap&SS, 28, 111

10. Grindlay et at. 1974 AIM, 187, 1.93
11. Brecher et at. 1974 AIM, 187, ].97
12. Schlovskii 1974 SovAstron, 18, 390
13. SchlovskJi 1974 SovAstron, 18, 390
14. Bisnovatyi- etal. 1975 Ap&SS, 35, 23
15. Bisnovatyi- etal. 1975 Ap&SS, 35, 23
16. Bisnovatyi- et at. 1975 Ap&SS, 35, 23
17. Pacini et at. 1974 Nature, 251,399
18, Narlikar et at. 1974 Nature, 251,590
19. Tsygan 1975 A&A, 44, 21
20. Chanmugam 1974 AIM, 193, L75
21. Prilutsld at at. 1975 Ap&SS, 34, 395
22. Narlikar et at. 1975 Ap&SS, 35, 321
23. Piran et at. 1975 Nature, 256, 112
24. Fabian et al. 1976 Ap&SS, 42, 77
25. Chanmugan 1976 Ap&SS, 42, 83
26. Mullan 1976 AIM, 208, 199
27. Woosley et at. 1976 Nature, 263, 101
28. Lamb at at. 1977 AIM, 217, 197
29. Piran et el. 1977 AIM, 214, 268
30. Dasgupta 1979 Ap&SS, 63, 517
31. Tsygan 1980 AS,A, 87, 224
32. Tsygan 1980 A&A, 87, 224
33. Ramaty et at. 1981 Ap&SS, 75. 193
34. Newman et el. 1980 AIM, 242, 319
36. Ramaty et at. 1980 Nature, 287. 122
36. Howard eZ at. 1981 AIM, 249, 302
37. Mitrofanov el at. 1981 Ap&SS, 77, 469
38. Colgate et at. 1981 AIM, 248, 771
39. van Buran 1981 AIM, 249, 297
40. Kuznetsov 1982 CosRas, 20, 72
41. Katz 1982 AIM, 260,371
42. Wooefey etal. 1982 AIM, 258,716
43. Fryxell el al. 1982 AIM, 256,733
44. Hameury etal. 1982 A&A, 111,242
45. Mitrofanov et el. 1982 MNRAS, 200, 1033
46. Fanirnore et al. 1982 Nature, 297, 665
47. Upunov et at. 1982 Ap&SS, 85, 459
48. Baan 1982 AIM. 261, L71
49. Ventura etal. 1983 Nature, 301,491
50. Bisnovatyi- et el. 1983 Ap&SS, 89, 447
51. Bienovatyi- et aL 1984 SovAstron, 28, 62
52. Eliison et at. 1983 A&A, 128, 102
53. Hameury et at. 1983 A&A, 128, 369
54. Bonazzola et el. 1984 A&A, 136, 89
55. Michel 1985 AIM, 290, 721
56. Uang 1984 AIM, 283, 1.21
57. Uang etal. 1984 Nature, 310, 121
58. Mitrofanov 1984 Ap&SS, 105,245
59. Epstein 1985 AIM, 291,822
60. Schlovsldi et el. 1985 MNRAS, 212,545
61. Tsygan 1984 Ap&SS, 106, 199
62. Usov 1984 Ap&SS, 107,191
63. Hameury et el. 1985 AIM, 293, 56
64. Rappaport el at. 1985 Nature, 314, 242
65. Tremaine et at. 1986 AIM, 301,155
66. Muelimov et at. 1986 Ap&SS, 120, 27
67. Sturrock 1986 Nature, 321, 47
88. Paczynski 1986 AIM, 308, L43
69. Bisnovatyi- et aJ. 1986 SovAstron, 30, 582
70. Aloock at at. 1986 PRL, 57, 2088
71. Vahai et at. 1988 A&A, 207, 55
72. Babut et at. 1987 AIM, 316, L49
73. Uvio etal. 1987 Nature, 327, 398
74. McBrean et at. 1988 Nature, 332, 234
75. Curtis 1988 AIM, 327, 1.81
76. Melia 1988 AIM, 335, 965
77. Rudarman etal. 1988 AIM, 335, 306
78. Paczyneld 1988 AIM, 335, 525
79. Murikami et al. 1988 Nature, 335, 234
80. Melia 1988 Nature, 336, 656
81. Blaes etal. 1989 AIM, 343,839
82. Trofimenko et at. 1989 Ap&SS, 152, 105
83. Sturrock at el. 1989 AIM, 346, 950

ST COS SN shocks stellar surface in distant galaxy
ST COS Type II SN shock brem, inv Comp scat at stellar surface
ST DISK Stellar superflare from nearby star
WD DISK Superflara from nearby WD
NS COM DISK Relk: comet perturbed to collide with old galactic NS
WD ST DISK Accretion onto WD from flare in companion
NS ST DISK Accretion onto NS from flare in companion
BH ST DISK Accretion onto BH from flare in companion
NS HALO NS chunk contained by external pressure escapes, explodes
DG SOL Relativistic iron dust grain up-scatters so_ar radiation
ST DISK Directed stellar tiaras on nearby stars
WD COM DISK Comet from systern's cloud sykes WD
NS COM DISK Comet,from system's cloud strikes NS
ST COS Absorption of nauffino emission from SN in stellar envelope
ST SN COS Thermal emission when small star heated by SN shock wave
NS COS Elected matter from NS explodes
NS DISK NS crustal starquake glitch; should tJme coincide with GRB
WH COS White hole emits spectrum that softens with time
NS HALO NS corequake exotes vibrations, changing E & B fields
WD DISK Convection inside WD with high B fieldproducas flare
AGN ST COS Collapse of supermassive body in nucleus of active galaxy
WH COS WH excites synchrotron emission, inverse Compton scattering
BH DISK Inv Comp scat deep in ergosphere of fast rotating, accreting BH
NS DISK NS crusU:luake shocks NS surface
WD DISK Magnetic WD suffers MHD instabilities, flares
WD DISK Thermal radiation from flare near magnetic WD
NS DISK Carbon detonation from accrated ma(ter onto NS

NS DISK Map gating of accret disk around NS causes sudden accretion
BH DISK Instability m accretion onto rapidly rotating BH
DG SOL Charged intergal ral dust grain enters sol sys, breaks up
WD DISK WD surface nuclear burst causes chromospheric flares
NS DISK NS surface nuclear burst causes chromospheric flares
NS DISK NS vibrations heat ah'n to pair produce, annihilate, synch cool
NS AST DISK Asteroid from interstellar medium hits NS
NS HALO NS core quake caused by phase transition, vibrations
NS AST DISK Asteroid hits NS, B-field confines mass, creates high temp
NS DISK Helium flash cooled by MHD waves in NS outer layers
NS AST DISK Asteroid hits NS, tidally disrupts, heated, expelled along B lines
NS AST DISK Asteroid enters NS B field, dragged to surface collision
MG SOL Magnetic reconnaction at heliopause
NS DISK NS flaxes from pair plasma confined in NS magnetosphere
NS DISK Magnetic reconnection after NS surface He flash
NS DISK Hefusion runaway on NS B-pole helium lake
NS DISK e- capture triggers H flash triggers He flash on NS surface
NS DISK B induced cydo res in rad absorp giving ral e-s, inv C scat
NS DISK BB X-rays inv Comp scat by hotter overlying plasma
NS ISM DISK ISM matter acoum at NS magnetopausa then suddenly accretes
WD HALO Nonexplosive collapse of WD into rotating, cooling NS
NS ST DISK NS accretion from low mass binary companion
NS DISK Neutron rich elements to NS surface w_th quake, undergo fission
NS DISK Thermonuclear explosion beneath NS surface
NS HALO NS corequake + uneven heating yield SGR pulsations
NS DISK B field contains matter on NS cap allowing fusion
NS DISK NS surface nuc explosion causes small scale B reconnection
NS DISK Remnant disk ionization instability causes sudden accretion
NS DISK Resonant EM absorp during magneliC flare gives hot synch e-s
NS DISK NS magnetic fields get twisted, recombine, create flare
NS DISK NS magnetosphere excited by starquake
NS DISK Accretion instability between NS and disk
NS HALO Old NS in Galactic halo undergoes starquake
NS DISK Weak B field NS spherically accretes, Comptonizes X-rays
NS DISK NS flares result of magnetic convective-oscillation instability
NS DISK High Landau e-s beamed along B lines in cold arm. of NS
NS DISK NS + low mass stellar compan0on gives GRB + optical flash
NS COM DISK NS tides disrupt comet, debris hits NS next pass
NS HALO Radially oscillating NS
NS DISK Flare in the magnetosphere of NS accelerates e-s along B-field
NS COS Cosmo GRBs: rel e+/- opt thk plasma outflow indicated
NS DISK Chain fission of superheavy nuclei below NS surface during SN
SS SS DISK SN ejects slrange mat lump craters rotating SS companion
ST DISK Magnetically active stellar system gives stellar flare
CS COS GRB result of energy released from cusp of cosmic string
NS COM DISK Oort cloud around NS can explain soft gamma-repeaters
GAL AGN COS G-wave bkgrd makes BL Lac wiggle across galaxy lens caustic
WD COS WD collapses, burns to form new class of stable parlJcles
NS DISK Be/X-ray binary sys evolves to NS accretion with recurrence
NS DISK e+l- cascades by aligned pulsar outer-map-sphere reigniLion
CS COS Energy releasedfrom cusp of cosmic string (revised)
NS DISK Absorption features suggest separate co_der region near NS
NS DISK NS + accretion disk reflec4Jon explains GRB spectra
NS DISK NS seismic wavas coupla to magnetospheric Allen waves
WH COS Kerr-Newman white holes
NS DISK NS E- field accelarates electrons which then pair cascade



84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.

112.
113.
114.
115.
116.
117.
118.

Fenimore et el. 1988 ApJ, 335, L71 NS DISK Narrow absorption features indicate small cold area on NS

Roclrigues 1989 A J, 98, 2280 WD WD DISK Binary member loses part of crust, through L1, hits prima/y
Pineault et el. 1989 ApJ, 347, 1141 NS COM DISK Fast N,S _ough Oort clouds fast WD bursts only optical
Melia at aJ. 1989 ApJ, 346,378 NS DISK t-p=soo c elactrostaric accel and Comp scat from rot high-B NSs
Tmfimanko 1989 Ap&SS, 159, 301 WH COS Different types of white, "grey" holes can emit GRB
Eichler et al. 1989 Nature, 340, 126 NS NS COS NS - NS binary members collide, coalesce

Wang et aL 1989 PRL, 63, 1550 NS DISK Cyclo res & Raman scat fits 20, 40 keV dips, magnetized NS
Alexander at al. 1989 ApJ, 344, LI NS DISK QED mag resonant opacity in NS atmosphere
Melia 1990 ApJ, 351,601 NS DISK NS magnetospheric plasma oscillations
Ho et aJ. 1990 ApJ, 348, L25 NS DISK Beaming of radiation necessary from magnetized neutron stars
Mitrofanov et aJ. 1990 Ap&SS, 165, 137 NS COM DISK Interstellar comets pass through dead pulsar's magnetosphere
Dermer 1990 ApJ, 360, 197 NS DISK Compton scattering in strong NS magnetic field
Blaes et al. 1990 ApJ, 363,612 NS ISM DISK Old NS accretes from ISM, surface goes nuclear
Paczynski 1990 ApJ, 363, 218 NS NS COS NS-NS collision causes v collisions to drive super-Ed wind
ZdziarskJ at al. 1991 ApJ, 366, 343 RE MBR COS Scattering of microwave background photons by rel e-s
Pineault 1990 Nature, 345, 233 NS COM DISK Young NS drifts through its own Oort cloud
Trofimenko et aJ. 1991 Ap&SS, 178, 217 WH HALO White hole supernova gave simul burst of g-waves from 1987A
Melia et al. 1991 ApJ, 373. 198 NS DISK NS B- field undergoes resistive tearing, accelerates plasma
Holcomb et _d. 1991 ApJ, 378,682 NS DISK Alfen waves in non-uniform NS atmosphere accelerate particles
Haensel et aL 1991 ApJ. 375,209 SS SS COS Strange stars emit binding energy in gray. red. and collide
Blaes et aL 1991 ApJ. 381,210 NS ISM DISK Slow interstellar accretion onto NS, e- capture starquakes result
Frank et el. 1992 ApJ, 385, L45 NS DISK Low mass X-ray binary evolves into GRB sites
Woosley et aJ, 1992 ApJ, 391,228 NS HALO Accreting WD collapses to NS
Dar et aJ. 1992 ApJ, 388, 164 WD COS WD accretes to form naked NS, GRBs, cosmic rays
Hanami 1992 ApJ, 389, L71 NS PLAN COS NS - planet magnetospheric interaction unstable
Meszaros et aJ. 1992 ApJ, 397,570 NS NS COS NS NS collision produces anisotropic fireball

Carter 1992 ApJ, 391, L67 BH ST COS Normal stars tidally disrupted by galactic nucleus BH
Usov 1992 Nature, 357, 472 NS COS WD collapses to form NS, B-field brakes NS rotation instantly
Narayan et el. 1992 ApJ, 395, L83 NS NS COS NS - NS merger gives optically thick fireball
Narayan et aJ. 1982, ApJ, 395, 1_83 BH NS COS BH-NS merger gives optJcaJly thick fireball
BraJnerd 1992 ApJ, 394, 1.33 AGN JET COS Synchrotron emission from AGN jets
Meszaros et aL 1992 MNRAS, 257, 29P BH NS COS BH-NS have vs collide 1o _ in clean fireball
Meszaros et aJ. 1992 MNRAS, 257, 2gP NS NS COS NS-NS have vs collide to ys in clean fireball
Cline et al. 1992 A_, 401, L57 BH DISK Primordial BHs evaporating could account for short hard GRBs
Rees et al. 1992 MNRAS, 258, 41P NS ISM COS Relativ=stic fireball reconverted to radiation when hits ISM

A mostly complete list of refereed papers on possible physical

models for the gamma-ray burst phenomenon. Does not include

papers treating only radiation transfer, nor unrefereed conference

papers.

Seventh column indicates scale of GRB origin:

COS = cosmological (metagalactic, - Gigaparsecs); DISK = galactic

disk (- 100 parsecs); HALO = galactic halo (- tens of kiloparsecs);

SOL = solar environs (< 1 parsec). Note preference for

cosmological scenarios, previously eschewed, after appearance of

BATSE results on isotropy, source density inhomogeneity (late

1991)!

More than 100 combinatorial possibilities have been explored!

From: "A 'Century' of Gamma-Ray Burst Models", R.J. Nemiroff,

Comments on Astrophysics, 1993, in press.
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THE WHAT, WHY, AND HOW OF WAVELETS 15

(a)
1

0

-1
-5 0 5 -5 0 5

(b) 1.5

1

0.5

0

-0.5

o
2

1

0

-1
-5 0 5 -5 0 5

(c)
1

0.5

0

-0.5
-5 0 5

1

0

-1
-5 0 5

(d)

1

0

-1

0 1 0 1

(e)

1

0

-1

-2

1

0

-1

-2
-1 0 1 2 -1 0 1 2

(f)

-5 0 5 -5 0 5

FIG. 1.8. Some examples of orthonormal wavelet bases. For every ¢ in this figure, the
..

family Cj,k(x) = 2-J/2¢(2-J:_ k), j, k E Z, constitutes an orthonormal basis of L2(R). The

"pgure plots ¢k (the associated s,_li,_g function) and ¢ .for different constructions which we will

encounter in later chapters. (a) The Meyer wavelets; (b) and (c) Battle-Lemarig wavelets;

(d) the Haar wavelet; (e) the next member of the family of compactly supported wavelets, 2¢;

(f) another compactly supported wavelet, with less asymmetry.
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Kinematic vs. Cosmological Time Dilation

The redshifting of galaxies is the result of the mathematics that

define Friedman Robertson Walker (FRW) cosmologies. One can

interpret this redshift wholly kinematically as the recession velocities

of galaxies, but this picture is incomplete. In a real sense, however,

these galaxies are moving away from us - you can fit more and more

meter sticks between us and them as time goes by. These galaxies,

however, live in a younger denser universe, where time runs slower,

and light must climb out of a gravititation well to get from them to

us- all of which gets convolved into the one measurement we call

redshift.

If one were to hypothesize a completely Newtonian (but special

relativistic) universe where recession velocity was all there was, one

would find that this universe contains paradoxes that are not well

explained (for example: gravitational collapse calculations assume no

mass at infinity - which is not upheld in this Newtonian + SR

universe). Einstein found the best way yet to staple gravity and SR

together - (it took him years and many false starts) and the result

was GR and the immediate result of that was FRW cosmologies. Can

anyone completely visualize the reasons for GR and FRW cosmology?

- not completely. As R. Feynman once said - there is no complete

understanding of gravity beyond the mathematical form.

But even if GR is wrong and recessional velocity reigns supreme, you

would STILL get a time dilation. In this case it is just the Doppler

shift of a recessional velocity. In my opinion, time dilation is based

on more sound measurements (QSO redshifts of spectral lines, for

example) than the whole of GR theory itself. Our measurement of

time dilation is, however, the first explicit measurement of this

dilation, as the others are all based on spectral lines.

- Bob (Nemiroff)
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Concept Formation in Temporally

Structured Domains

Wayne Iba

April 8, 1993

Introduction

Unsupervised learning, or concept formation, is an important area of machine learning. In this
work, unlabeled data is presented to a concept formation system, and the system must form

concepts, or classes, that best characterize the observed data. Although unsupervised learning

mechanisms do not require cla_ labels, many of these methods have been successfully applied to

supervised learning tasks. In general, the concept formation system can take advantage of a class
label when it is available, but is not dependent on the presence of such a label.

Most previous concept formation systems have been designed to address data and domains

where instances are represented as a simple set of attribute-value pairs. However, many domains

of practical interest contain relationships - particularly temporal relationships. Such temporally
structured domains requ£re special techniques to form useful concepts from unlabeled data. We

have developed OXBOW, an unsupervised learning system that addresses domains where time, or
change, is a critical characteristic.

Summary of the Approach

The approach adopted in OXBOW assumes that instances consist of a series of state descrip-

tions over time, where each state description is represented in the traditional form (i.e., a set of
attribute-value pairs). The system consists of two separate modules, a parser and a classifier. The

parser takes the time-sequence of attribute values and finds significant break points as indicated

by discontinuities in the first or second derivatives of an attribute. The output of the parser is
usually a subsequence of the states present in the input, but where the states correspond to the
changes observed in the temporal data.

This parsed structure is then processed by the classifier. The job of the classifier is to identify

the best match of this instance to the classes it has constructed from all previous data. Intuitively,

the sequence of significant states should be characteristic of similar instances observed in the past,
and should guide the system to select the appropriate concept. In addition to finding the best

match, the classifier must also determine how to update its knowledge base in response to the

current data. In some cases, such as when a previously unobserved event has been presented,

the system must decide to create an entirely new class of unlabeled events. That is, in order

to maintain high classification accuracy, the classifier must continually update its knowledge in
response to newly acquired data. The evaluation function used to guide OXBOW to a useful set

of concepts and to the "best _ match for a test instance is based on Gluck and Corter's category

utility measure and attempts to trade off the ability of a class to predict any particular attribute,
and the ability of any given attribute to predict the class.

Evaluation Methodology and Results

We developed and extensively tested an earlier version of OXBOW in the domain of recognising

jointed limb movements and handwritten letters. A new version has been implemented for rec-

ognising the initiation of events on the shuttle's power bus. The previous results on recognising



handwrittenletters were quite encouraging and preliminary results on the power bus domain

appear positive as well.

Experimental design

Our first empirical evaluation of the revised OXBOW used a set of 36 signatures characterizing

electrical events on a three-phase power bus from shuttle telemetry. The 36 signatures were

selected from the startup events of six different components on the shuttle. However, the number

of examples of each type were not uniform; one of the signature types had only three examples

and the most frequent had eight. A signature for an event consists of current data (measured in

amps) for the three electrical phases during the initial six seconds of a component's operation.
This experiment ignored each signature's type for purposes of classification, and used it only

for evaluation purposes. We performed a cross-validation study with this data set by training the

system on 35 of the signatures and testing OXBOW's classification on the remaining signature.

We did this for each of the 36 signatures so that every signature was individually removed from

the training set and tested in turn. The training set of 35 signatures was randomly sampled

without replacement during learning. We determined the accuracy of a signature's classification

by comparing its type to the set of signature types stored at the concept in memory where OxBow

would have stored the test signature. The fraction of signatures whose types matched the test
instance was used as the accuracy score. So, we maintained information about the signature types

even though the learning system did not have access to this information.

Preliminary results

The resultsindicatean average classificationaccuracy of 91.7% (threemis-classifications)over

thisdata set. This experiment used allsix seconds of data from each signature. In a second

experiment, we used a shorterportionof each signatureduring trainingand testingby trimming

the set ofsignaturesto an average lengthof 0.975seconds. (The detailsof our trimming method

axe beyond the presentscope.)

A similarcross-validationstudy showed classificationaccuracy tofallto 70.7% inthiscondition

where lessdata was used. For our data set,the strategyof guessing the most frequent signature

would yield22% accuracy.Although overallaccuracy was significantlylower,thissecond condition

revealed that OXBOW could frequentlymake accurate classificationsusing relativelylittledata.

We expect that thesepreliminaryresultsrepresentlower bounds as we make modificationsto the

system so that itwillincludethe signaturetype information during training.There are several

other modificationsthat can be made to tune OXBOW more carefullyto thisdomain.

Conclusion

There are three primary areas of promise for OXBOW. First, it is especially useful in domains

where an unknown and potentially large number of different concepts must be discriminated. Sec-

ond, the system can accomplish this task even when a small percentage of the data is actually

labeled. Last, OXBOW provides a relatively general mechanism that can function effectively in

many different temporally structured domains. On the down side, this approach is rather expen-

sive computationally, and the final predictive accuracy may not exceed that of a special purpose
approach. However, all results to date have suggested that OXBOW could play an integral role in

temporal recognition tasks.
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Introduction

What is the problem?

Accurately classify temporal events of interest based on previous

exposure to similar events

What is the approach?

Concept formation- the incremental unsupervised acquisition of

a classification scheme over a data stream

o why unsupervised learning?

What is accomplished?

Promising classification accuracy without supervised training
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The OXBOW System

We developed OXBOW tO represent, acquire, and recognize classes

of jointed limb movements.

• extended to generic temporal event recognition

f clasg{i_-f,on



Parsing Temporal Events with OXBOW

Input format:

((t_,A_),(t_,A_),..., (t,_,A_))

where

Ai = [attl , att2,..., attk]

The parser extracts first and second derivatives for the attributes and

creates sequence states according to zero-crossings detected.

Parsed output format:

((t_,h_, A_),..., (tj, a._,._j))

forj << n



Concept Formation with OXBOW

Our system is based on Fisher's

concept formation system.

COBWEB, a robust and accurate

0

0

probabilistic concepts organized hierarchically

performance and learning mechanisms identical

• eventsrepresented as temporal structures

Given a new instance and a concept in the hierarchy:

. Find the best match of the new instance to the concepts stored at

the current level of the hierarchy

2. Compute the score for creating a new class containing only the

new instance

o Unless creating a new class, recursively classify the new instance

in the hierarchy below the best class.

\4-]
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Preliminary Evaluation

Domain: thirty-six labeled electrical events from a three-phase power

bus on the shuttle

o six different devices

o three amperage values at 0.1 sec. intervals over six secs.

Experimental design: cross-validation study testing a single instance

at a time in two condtions:

o complete data: fullsixseconds of data

o partial data: events truncated to average of 0.975 seconds



Preliminary Results

Complete Data Partial Data Most Frequent

Accuracy 91.7% 70.7% 22.2%
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Future Work

• Include signature type information in training data

• Tuning for a given domain

• Efficiency of learning and classification

• Extend to handle abnormal events



Conclusions

A concept formation approach, such as developed in OXBOW, has

several advantages, and disadvantages:

• Pros

o generality to a variety of temporal domains

o scalable to a large number of concepts

o may discover classes of abnormal events or interesting sub-

classes

• Cons

o accuracy needs to be higher

o implemented in Lisp and currently computationally unwieldy

\%9__



Methodological Issues Raised

Preliminary exposure to this domain suggested several important

issues relevant to future testing:

• quality of the training data

• quality of the testing data

• quality of the controllers



Results of the Santa Fe Time Series Competition

Andreas Weigend

Xerox PARC and

University of Colorado at Boulder

Most observational disciplines, including physics, biology and finance,

try to infer properties of an unfamiliar system from the analysis of a

measured time record of its behavior. There are mature techniques

associated with traditional time sei-ies analysis. During the last

decade, new approaches such as neural networks have emerged, promising
results and insights not available with standard methods. However, the

evaluation of this promise has been difficult. Adequate benchmarks were

lacking, and most of the literature has been fragmentary and anecdotal.

Global computer networks enabled disjoint communities to attack these

problems through the widespread exchange of data and information. In

order to foster this process, we organized the "Time Series Prediction

and Analysis Competition" under the auspices of the Santa Fe Institute

during the fall of 1991. With the assistance of an advisory board from

the relevant disciplines, we selected (and made generally available)
a group of data sets that cover a broad range of interesting attributes.

* A clean physics laboratory experiment (NH_3 laser).

* Physiological data from a patient with sleep apnea.

* Tick-by-tick currency exchange rate data (Swiss Franc--US Dollar).

* A computer generated series designed for this competition.
* Astrophysical data from a variable white dwarf star.

* J S Bach's final (unfinished) fugue from "Die Kunst der Fuge."

The participants in the competition were asked to submit:

* Forecasts of the continuation of the data sets (that were withheld).

* Analyses of properties such as the number of degrees of freedom, the

noise characteristics, and the nonlinearity of the system.
* Models of the governing equations.

* Descriptions of the algorithms employed.

In this talk, I will motivate our choice of the data sets, present some of

the results of the competition, and close with some thoughts on the inter-
play between learning time series and characterizing dynamical systems.

(Joint work with Neil Gershenfeld, MID
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(This version: May 25, 1993)

Abstract. The use of a measured time series to characterize the nature of an observed system and to

model its future behavior arises throughout scientific research. There are a number of new approaches to

this very old problem that promise insights unavailable with traditional approaches, however in practice

the application of techniques such as state-space reconstruction and neural networks has been hampered

by results that can he unreliable and by the difficulty of relating their performance to that of mature
algorithms. This article reports on a time series competition that was recently run through the Santa Fe

Institute in order to bring together researchers from a range of relevant disciplines to help make meaningful

comparisons between their approaches by analyzing common data sets. The design and results of the

competition will be described, and the necessary theoretical and historical background to understand the
successful entries will be reviewed.

THIS IS A DRAFT. THE FINAL VERSION IS TO APPEAR LN': Predicting the Future and Understanding the Past: a
Comparison of Approaches (Proceedings of the NATO Advanced Research Workshop on Time Series Analysis and

Forecasting, held in Santa Fe, New Mexico, May 14-17, 1992.) Edited by Andreas S. Weigend and Neil A. Gershenfeld

(Reading, MA: Addison-Wesley, 1993).

"Address afterAugust 1993:
Department of Computer Science and Institute of Cognitive Science,
University of Colorado,Boulder, CO80309-0430, USA.
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OVERVIEW

:_ Time Series

• From linear to nonlinear paradigm

• Understanding

- From Yule to embedding

• Learning

- Emulate unknown structure

-Generalization vs memorization

SFI Results: Prediction

• Filtered embedding (Sauer)

• Neural network (Wan)

° Hidden Markov model (Fraser)

Q SFI Results: Characterization

• Direct vs indirect (via prediction)

Q The Future



INTRODUCTIOI_._ _

Three problems

D predict

• short-term forecasts

model

• long-term behavior

trajectory, attractor

differential equations

characterize

• fundamental properties

amount of noise

degrees of freedom

Complementarity of
understanding and learning



PARADIGM CHANGES

I. pre-1920's:

global fit in time

2. 1920's to 1980's:

linear modeling and prediction

+ superposition, easily understood

- qualitative behavior limited

- similar spectra from different systems

3. post-1980's:

nonlinear paradigm

computer simulation of nonlinear systems

automatic data acquisition

machine learning



SFI COMPETITION-

Set-up

• August 1991: Data on server

• January 1992: -- Deadline

What happened?

• more than 1000 people ftp'ed data

• about 40 submitted predictions

Follow-up

• May 1992: NATO Workshop

• July 1993: Book (A-W)

Data remain available

anonymous tip to

ftp. santafe, edu



UNDERSTANDING _-_ LEARNING

Understanding

perspective: low dimensional DEQ's

- Embedology vs Yule

dimension of manifold

stochastic vs deterministic world view

Progess: recognize/characterize geometry

Learning

perspective: search in function space

emulate unknown structure

strong vs weak models

Progress: learning _ understanding

a Generalization vs Memorization

perspective: large model spaces

good: more flexible

bad: problem of Overfitting

Progess: model selection

_7__



PREDICTIONS

• LASER DATA SET(A: 1,000 points)

Smart embeddina:

a filtered delay coordinates-

(Tim Sauer, George Mason U)

Smart function a roximation:

D connectionist network

(Eric Wan, Stanford U)

• SYNTHETIC DATA (D: 100,000 points)

Smart estimatio of diction errors:

hidden Markov model

(Andy Fraser, Portland State U)



NEURAL NETWORKS

Wan's architecture: 1-12-12-1

replaces ech connection by a delay line
(25, 5, 5 lags)

1105 parameters: a puzzle?

neural networks:

limitnumber offeatures

but allow arbitrarynonlinearities

iterativemethod: implicitregularizer

earlystopping / crossvalidation

vs"traditional" statistics:

limit order ofinteractions



H I DDEN MARKOV MODE L

Fraser and Dimitriadis

20-state model

local linear autoregressive filters of
8th order

4.5 transitions on average from each
state

6,000 parameters



CHARACTERIZATION

Direct

Redundancy:

Incremental mutual information as
function of embedding dimension

Indirect via re_'ction

characterize by analysis of
performance

temporal structure in residual errors?

time reversal

surrogate data

DVS modeling

Connectionist



CHARACTERIZATION
VIA PREDICTION

Connectionist models

• test error (out of sample error)
as function of number of hidden units

use regularizer in training

• effective dimension of hidden units

from eigenvalue spectrum of hidden units

a DVS models

• test-error (out of sample error)
as function of number of neighbors

Construct family of local linear models

with size of neighborhood as parameter

(extremes: local look-up-global linear)

plot out-of-sample error

"Deterministic vs Stochastic Plots'
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Title:

Editors=

Series=

Predicting the Future and Understanding the Past:

a Comparison of Approaches

Proceedings of the NATO Advanced Research Workshop

on Time Series Analysis and Forecasting

held in Santa Fe, New Mexlco, May 14-17, 1992.

Andreas S. Weigend and Nell A. Gershenfsld

Santa Fe Institute

Studies in the Sciences of Complexity

Publisher: Addison-Wesley, June 1993.

Backorder: Call A-W Order Dep_n_ at 1-800-447-2226.

Order numbers: 62601 (hardcover), 62602 (pbk).

Summary. This book presents a multi-disdpLinary view of the state of the art in

areas of prediction and analysis of temporal sequences. Different methods to forecasting

and characterization of time series are compared and contrasted in a comprehensive

overview chapter by the editors. Details of these approaches, such as connection/st

networks, sun'ogate data and filtered delay coordinates, are teen explained by the

individual researchers. All techniques are applied to a few _y selected benchmark

time series.

Why this book?

Most observational disciplines, including physics, biology and finance, try to infer prop-

erties of an unfamil/ar system from the analysis of a measured time record of its behavior.

There are mature techniques associated with traditional time series analysis. During the

(page 1)
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last decade, new approaches such as neural networks have emerged, promising insights

not available with these standard methods. However, the evaluation of this promise has

been difficult. Adequate benchmarks were lacking, and most of the literature has been
fragmentary and anecdotal.

Global computer networks enabled these disjoint communities to attack these problems

through the widespread exchange of data and information. In order to foster this

process, the editors organized the Time Series Prediction and Analysis Competition under

the auspices of the Santa Fe Institute during the fall of 1991. With the assistance of

an advisory board from the relevant disciplines, they selected a group of data sets that

cover a broad range of interesi_'_g attributes:

• Tick-by-tick currency exchange rate data (Swiss Franc - US Dollar).

• Physiological data from a patient with sleep apnea.

• Astrophysical data from a variable wh/te dwarf star.

• A clean physics laboratory experiment (NH 3 laser).

• A computer generated series designed for this competition.

• J.S. Bach's last (unfinished) fugue from D/e Kunst der Fuge.

The data was made generally available at ft:p. aaat:a£e. _ (and will remain publicly

accessible there). The participants in the competition were asked to submit:

• Forecasts of the continuation of the data sets (that were withheld).

• Analyses of properties such as the number of degrees of freedom, the noise charac-

teristics, or the nonlinearity of the system.

• Models of the governing equations.

• Descriptions of the algorithms employed.

In order to explore the results of the contest, the editors organized a NATO Advanced

Research Workshop in the spring of 1992. Workshop participants included members of the

advisory board, representatives of the groups that had collected the data, participants

in the contest, and some interested observers. Although the participants came from a

broad range of disciplines, the discussions were framed by the analysis of common data

sets and hence it was usually possible to find a meaningful common ground.

This volume now presents tb_ results of both the competition and the workshop. One

of its strengths is its focus on a common set of problems tackled by a variety of different
methods.

(page2)
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Contents

The volume consists of three parts:

1. Overview. In the first part, the editors present the results of the competition

and the workshop and analyze the advantages and disadvantages of the various

techniques both in time series prediction and in characterization. In the area of

prediction, recumng themes include the importance for careful assessments of the

statistical reliability of the results, and the need to match the level of description

of the model to the system being studied (from deterministic low-dimensional dy-

namics to stochastic processes).

In the area of characterization, several techniques are presented that try to estimate

the number of degrees of freedom of the system or the rate at which the system loses

memory of its state. A common feature here is the desire to reduce the sensitivity

to geometrical artifacts abundant in standard methods (such as correlation dimen-

sions and Lyapunov exponents). The methods discussed include information-based

measures as well as estimators based on evaluating the reliability of the embedding.

2. Details. In the central part, fifteen scientists who applied their methods to the

data, motivate and describe their ideas in individual chapters. Although from

a wide variety of different disciplines (statistics, experimental and computational

physics, electrical and mechanical engineering, economics and finance, biology and

medicine, musicology and others), all contributors focus on the same sets of data.

Their strictly refereed contributions are as self-contained as possible.

3. Data. In the third part, the scientists who contributed the time series describe

the scientific questions behind their data and the kinds of models typical in their

home disciplines. They then analyze their data with the current methods in their

respective fields, and finally gauge what they have learned from the new techniques

that were applied to their data in the competition and at the workshop.

The book also explores the relationship between time series methods and the analysis

of spatio-temporal problems (there appear to be natural connections, such as the Use

of spatial analogs of time-delay embedding). It doses with some thoughts pointing

towards the future of prediction by the scientific advisors to the project.

P

Outlook

This volume is a valuable timely contribution to the rapidly growing field of nonlinear

time series analysis. It contains the results of the most rigorous comparison of different

methods to time series prediction-if not to machine learning in general-to date. This

(page3)
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breadth and competence was achieved through the high-profile Time Series Prediction

and Analysis Competition at the Santa Fe Institute and the subsequent NATO Advanced

Research Workshop that brought together an international group of time series experts

from a wide variety of fields. This volume will serve as a unique multi-disciplinary

reference of the present state of analyzing and forecasting time series.

Editors

Andreas Weigend received his PhD from Stanford University and was a postdoc at Xerox

PARC (Palo Alto Research Center). He is Assistant Professor in the Computer Science

Department and Institute of Cognitive Science at the University of Colorado at Boulder.

Neff Gershenfeld received his PhD from Comell University and was a Junior Fellow at

Harvard University. He is Assistant Professor in the Physics Department and Media
Lab at MIT.

Address for correspondence:

Andmas Weigend
Xerox PARC

3333 Coyote Hill Rd

Palo Alto, CA 94304

phone: (415) 812-4765

fax: (415) 812-4334

emaih weigend@cs.colorado.edu

(page4)
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Shallow and Deep Knowledge Techniques for
Diagnosis of Time-dependent Data

Steve A. Chien, Nicolas F. Rouquette,

Leonard K. Charest, Jr., and E. Jay Wyatt

Jet Propulsion Laboratory

California Institute of Technology

Increasing complexity of complex process control applications have
posed difficult problems in fault detection, isolation, and recovery

(FDIR). Shallow and deep knowledge-based diagnosis techniques from

Artificial Intelligence offer some promise in addressing the problems.
Shallow knowledge techniques rely on large amounts of data/examples to

characterize the behavior space. In contrast, deep models require

well-understood behavioral models of the components in the target

system. In order to support Space Station Freedom (SSF) design and
testbed activities, we have developed shallow and deep-level diagnosis

models for SSF systems from the Environmental Control and Life Support

System (ECLSS) and the External Active Thermal Control System (EATCS).

In the shallow knowledge diagnosis system, classified examples of
faults are used as training data for a decision tree induction system.

In order to deal with the complexity that faults can occur at various

times within the sensor polling cycle, the input data is processed to
contain examples of all possible fault/sensor poll sychronizations.

The deep knowledge diagnosis technique is an extension of classical

model-based diagnosis techniques to deal with sparse data, noise, and

complex non-invertable numerical models. In this approach, a two
phased approach to diagnosis is used. In the first phase, an

extension of constraint suspension is used to generate a set of

candidate component faults. In the second phase, a generalized

simulation is used to determine which of the remaining candidate

faults best matches the observed data. Because the steps are ordered
in terms of d=ecreasing robustness, in the event of a novel, unforseen
fault, operators can fall back upon candidate sets from earlier phases

of diagnosis.

_73
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Neural Networks for Prediction

Claudia Meyer,
NASA Lewis

Sensors fail at a much higher rate than any other component

on the SSME. Failures of redlined sensors have been responsible

for premature engine cutoffs during ground test firings and
flight. Also, as advanced safety algorithms are developed and

tested, validation of a large number of performance sensors has

become necessary. Sensor validation is also a vital component of
an automated post-test diagnostic system since failed sensors

must be identified before engine health assessments can be made.

Toward this end, NASA LeRC has been leading efforts in the

SSME sensor validation area. We have focussed on analytical

redundancy, a technique in which a sensor's value is predicted by
using other sensor values and known relations among the sensor

values. The sensors and the set of relations among them define a

network. A methodology for fusing or combining the evidence from

the sensors and relations in a network has been developed under

contract using Bayesian probability theory.

The greatest challenge in building these networks has been

the development of analytical redundancy relationships which are

valid over a large number of engines on all three test stands at
Stennis. Three analytical redundancy approaches have been

considered: characteristic equations, empirical correlations

and neural networks. The characteristic equations and empirical

correlations are being developed under contract, while the neural
network activity has been in-house. Neural networks are well-

suited for approximating complex nonlinear systems and can

uniformly approximate any continuous function. Feedforward

neural networks with one and two hidden layers have been used to

predict various critical parameters during both the startup
transient and mainstage operation of the engine. Time windows of

data from related parameters have been used as network inputs.

These networks were trained on data from nominal firings of one

engine and validated using data from other nominal firings of the

same engine. Good prediction accuracy was achieved. The behav-

ior of the mainstage networks in the event of a hard input sensor
failure has been characterized. Good prediction accuracy can be

maintained when a synthesized value of the failed input is
substituted for the faulty sensor.

One of the problems associated with mainstage training is
the large amount of test data that is available for each test

firing (more than 12000 patterns for a typical 500 see duration

test fLring). Methods for reducing the number of patterns are

currently being investigated. One approach involves the use of

learning vector quantization for data compression. The other

approach involves orthogonal least squares methods which are
often used in conjunction with radial basis function networks.

Another interesting aspect of this project has been the use

of genetic algorithms to select the inputs to a neural network

kqT_.



function approximator. This input selection technique has been

of particular interest since it could suggest sensor placement on

future engines for analytical redundancy of critical parameters,
in addition to generating an optimal or near-optimal set of

inputs for a critical parameter within an existing sensor suite.
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System Trend Analysis Reduction Tool

W. Joseph Elliott,
Analex Systems and KSC

A computer program was written using Statistical Process Control (SPC)

methodology in order to prioritize Ground Support Equiment (GSE)
systems for further problem investigation. Problem data from

approximately 2500 GSE systems were retrieved from the Problem

Reporting and Corrective Action (PRACA) database at KSC. Following

Program processing, thirty-one systems failed one or more defined
evaluation criteria. These systems then becamse prime candidates for

detailed investigation of problem occurrences. Initial application of

the program focused on critical GSE systems. The program has since

been modified to address non-critical GSE and Shuttle flight systems.
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Goddard Abstract - Current Trend Analysis Activities

Goddard Trend Analysis Abstract for the workshop on the Automation of Time
Series, Signatures, and Trend Analysis.

Walt Truszkowski, Troy Ames, Sid Bailin, Scott Henderson

Currently our group is evaluating mechanisms for automating aspects of the
engineering telemetry trend analysis function now performed by spacecraft

analysts. For the Extreme Ultraviolet Explorer (EUVE) spacecraft, this

function is being supported by a system called the Generic Trend Analysis

Workstation (GTAW). GTAW supports the computation of minima, maxima,

averages, and standard deviations for specific data points over designated

time periods, and can produce graphical plots of the results. Our group
has been asked by the GTAW developers to explore extensions to their tool

set that could autonomously identify noteworthy situations or trends

within a data set and/or assist with the diagnosis and explanation of

situations and trends. We began this task by breaking down the trend
analysis function into sub-symbolic front end processing to support the

identification of irregularities in the telemetry stream, and symbolic

back end processing to support the interpretation of detected

irregularitiesQin particular, to explain the irregularities, and then to

predict future behavior from the explanation.

We have run some initial experiments using the TDAG algorithm as a

sub-symbolic front end processor to identify surprising events. These

experiments used simulated data sources and a crude scoring method to
evaluate the algorithm's ability to form an accurate model of a data

source, and to identify when that data source had been perturbed. Our

initial results where supportive, and will be reported in this talk.

We ran up against three issues in the use of TDAG. The first is the

translation of a real valued data stream with noise and missing data

points into a stream of discrete symbols which can be processed by

the algorithm. The second is scoring the predictive accuracy of the

algorithm given the set of hypotheses in the algorithm's state queue and
the actual next symbol seen. The third is setting the parameters of the

algorithm so that a maximally accurate model can be grown within the

constraints of available memory.

We are now running similar experiments on real telemetry data. Obtaining

suitable data has been a difficult process because of the other demands on
the time of the GTAW team. Anecdotes of this experience will be presented

along with any real results available by the time of the presentation.

We are also in the process of adapting modeling tools which we had

previously developed for simulation purposes to serve the role of back-end

symbolic processing. The new tool will be used initially to track the

state of the spacecraft based on the command stream which it has received.

Statistical and sub-symbolic methods sacrifice some of their utility by

averaging across different spacecraft states and activities. By

exploiting information from the symbolic model about the state of a system

we hope to produce analyses of the behavior of the spacecraft over time

for specific activities. Examples could be the slew rate for an

instrument, or the time required to fully charge a battery. This type of



productrequiresthe synthesisof low level information,
suchasthepowerusageof asubsystem,andhigh level information,suchas
the time at which charging began and the time at which full charge was

achieved. While some of this high level information can be inferred from

other telemetry points, the command history is an obvious secondary source
and in some cases represents the true baseline against which behavior

should be compared. We will present slides on the current prototype of

this tool (DIG) and on its planned application to trend analysis.

We will briefly discuss our current plans for developing a library of

models and the configuring of those models to support a trend analysis

session. Additionally, we will discuss our plans for beginning work in
providing a knowledge-based trend analysis capability for battery-related
data.
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Predictive Information Research for Aircraft Fault

Management at NASA Langley

Anna Trujino,
NASA LaRC

Predictive Information Research for Aircraft Fault Management at NASA

Langley A widely held belief, by both pilots and researchers alike, is

that providing predictive information on subsystem behavior to flight
crews of commercial transport aircraft will be beneficial. For

example, the ability to alert the flight crew that the engine will be

out of oil in 20 minutes or that an engine seizure is imminent, may
give them more options for dealing with the situation or at least help

them be mentally prepared for it. There are data from incidents and

accidents which suggest that these predictions are possible because

there was evidence available on the flight deck of a failure well

before any exceedences were reached. However, as with most new

technologies that go onto modern flight decks, the benefits must
outweigh the costs. The benefits of prediction could include:

improved safety due to more strategic planning, earlier warnings so

that more options (e.g., airports) are available, and increased crew
situation awareness; and improved efficiency due to longer service

time for aircraft components, fewer inflight shut-downs, and more

fuel-efficient emergency procedures. The costs could include:

developmental and production costs of prediction information; accuracy

costs due to the risk of predicting the unknown future; and possible
negative flight crew impact due to increased workload, confusion, or

perhaps a degradation in situation awareness. It is the goal of this
predictive information research program to attempt to quantify some of

these costs and benefits and to provide recommendations in the form of

information systems and displays that would be appropriate on the

flight decks of commercial transport aircraft. The primary
consequences regarding the implementation of predictive information in

the flight deck pertain to its effects on the flight crew.

There are at least two options for implementing prediction

information. The f'n'st is for the automation to make the prediction

and to present it. The second is for the automation to preproeess

certain key information elements and to allow the crew to use those

elements to make a prediction. Whether the automation or the crew

make predictions, the information for the predictions may (and
probably should) be based on several key elements, which may include:

current trends based on history, fault information, status

information, and similar case histories. In the fin'st option
(automated), the automation might preprocess this information and then

make a prediction based on these data. The system would then present

that prediction to the crew. In the second option (aiding), the crew

would only see the preprocessed information and would have to make the

actual prediction themselves. Automating may be both faster and more

accurate than having the flight crew process the information. But,

some advantages of aiding are that the preprocessed information may be

cheaper and more reliable, the crew may have information that the

system may not have, and it may improve the crewis situation
awareness.

A consideration of the strengths and weaknesses of both options,
aiding and automating, must be taken into account to obtain a proper



balance.Initial researchin predictionatLangleyhasfocusedand
will continueto focuson the utility or demand for predictive
information. Human/machine experiments will explore variations of the

two options stated above. In these experiments, the predictive
information will be contrived rather than calculated. Factors such as

accuracy, "look-ahead time," time until a critical event, and

parameter type (e.g., oil pressure, generator voltage) will be

manipulated. The goal is to discover a relationship between

variations of predictive information (based on levels of aiding or
automation and other factors) and the costs and benefits of that
information.

For pragmatic reasons, research into the computational techniques for

providing predictive information is being postponed. There are

several computational obstacles that must be hurdled in order to

provide predictive information, because only then can the assumption

that predictive information increases the safety and economy of flight

be fully substantiated. Some of these obstacles are the chaotic
behavior of systems (especially failed systems), the poverty of data

regarding system failures (neededfor development and testing), the
variability in individual parameter behavior (conflicting with the

desire for consistency in information provided for all parameters),

and the computational and sensor limitations of current aircraft. In

summary, our research objective for studying predictive information is

to ftrst determine the impact of predictive information on the
man/machine system in terms of the safety and economy of flight. We

will control and vary the omniscience of the predictive information,

and we will explore the different levels of predictive information

aiding, from aiding the flight crew to automating prediction, in order
to enumerate its benefits. Since our objectives lie in the

human/machine interaction aspects of predictive information, we

welcome any assistance in research into the computational aspects of

providing predictive information.
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Summary of the Afternoon Discussion Session

Padhraic Smyth, Chair

(edited by Phil Laird)

P.S:

series:
To seed the discussion, I've listed several dimensions along which to analyze time

• Purpose: causal models vs. prediction vs. anomaly detection.

• Operations: manual vs. semi-automated tools vs. full automation.

Data vs. prior knowledge: data manipulation alone only goes so far; prior knowledge

is essential to gofarther.

Transients vs. long-term dynamics. Temporal properties are more important in the

former than in the latter, which sometimes may be treated as "static."

Representation: signal amplitutde, thresholds, AR/MA models, wavelets, linear mod-

els, transform methods, non-linear methods, Markov models, etc.

• Noise vs structure: which is which?

Also,

Raw data vs annotated data (unsupervised vs. supervised)

we should ask what the hard problems are. Some that have been discussed here are:

Matching problem/data to model/algorithm.

Feature extraction, data preprocessing (a "black art').

Combining data and prior knowledge.

Is "normal behavior" quantifiable?

NS: Is there a taxonomy of datasets, a small set of characteristic parameters? Andreas'

dataset attributes slide seemed to provide some ideas for that.

RS: Dimension reduction is hard, but at least it makes the problem solvable. The key

problem is to find better ways to reduce the dimension.

PL: Is there a fundamental measure of dimensionality, as there is for pattern classifica-
tion?

AW: Sometimes low dimensionality is bad: higher dimensionality can make it easier.

For example, ANNs often use a large number of dimensions/parameters, because embedding

the problem in higher dimensional space makes it easier to represent. Also, you need to be

careful about the term "degrees of freedom" (various meanings exist).



PS: Is a nonlinear approach really necessary. 7 In light of Wold's Theorem, aren't linear
models sufficient?

TM: A simple counterexample: train a net to pick points that lie within the inner of

two concentric circles. The decision surface is nonlinear, yet a network learns it after seeing

examples involving only one point outside the inner circle.

RS: Networks do provide some protection from overfitting, through the relationships

among the parameters, but it is possible to overtrain. They are also good for spotting outliers

(errors) in the training data. Conventional statistics don't have this property.

PS: Nonparameteric statistical methods are better at this than parametric statistics.

AW: What real]y is a linear time series? Here's a test: given a timeseries, take the

Fourier transform, randomize the phase, and reinvert. The resulting signal has the identical

power spectrum, but all effects due to nonlinearities are destroyed. If you then get same

"answer" from your timeseries analysis box, the box is a linear method measuring linear

structure.

JN: That test is also a good test for chaos. If you get the same dimension, then the

data wasn't chaotic.

PS: What are the hard problems at some of the other centers?

DH: Some are just a matter of software and data handling. Also, it's often hard selling

new techniques to customers: showing that they work, explaining how they work.

CM: People in charge of operations just won't tolerate "black boxes," things they don't

understand and in which they have no confidence.

PL: Can we combine these problems into operations areas by bridging, combining tech-

niques from different disciplines? There is then less of a perception that the technique arises

in a field that the user doesn't understand.

JZ: Code D from HQ, and the JSC Software Technology Branch are trying to bluld

toolkits for this purpose, especially for the OHMS/RCS (Orbital Health Management Sys-

tem/Reaction Control System). This is just now getting underway.

PS: There are many good opportunities here for university collaborations.

CM: The University of Cincinnati has a group studying radial basis nets, and got data

from LeB.C for the purpose.

Unknown: NASA seems reluctant right now to give out data and software.

RS: Data is actually more valuable than software, but software is perceived as having

value by NASA and hence its distribution is more restricted.

CM: Datasets need to be carefully documented and maintained.

SC: I worry somewhat about the "toolkit" idea, and would encourage adopting a broader

view. Tools change and evolve. Also, feature extraction is crucial. E.g. the problem of



sensitivity to the particular test probably can be handled with appropriately chosen features.

P,.S: Things are not now ready for off-the-shelf tools, but may well be in a few years.

In our project, we modularized the system so that different tools could be plugged into the
various boxes.

WI: The intention of toolkits is not to freeze research; all the tools in the toolkit are

useful for a variety of jobs. The general problem is getting the system used; and a toolkit

facilitiates that screening process.

PL: There is a big gap between knowledge intensive methods and other methods in that

there seem to be no systematic ways to incorporate knowledge. Yet that seems essential to
the toolkit notion.

JN: How do we handle data that doesn't come evently spaced or is otherwise hard to
"deconvolve" ?

P.S: Humans always "cheat"-use side information not given in the formal problem.

PS: And in some applications that really makes the difference between what a machine
can and cannot do.

SC: There is hope that recurrent neural nets will solve some of these problems.

TM: I have worked with ANNs in oil and medical industries. There the technique was

to put the signal attributes rather than the signal itself into the network.

AW: I am surprised that no one has brought up robust timeseries estimation. I expected

more discussion of how people spot outliers and what they do with them. Outliers arise, e.g,

from errors in the data. Are there any general approaches?

SC: You can't separate outliers from knowledge of the domain.

ffZ: When something abnormal happens, you can look for clues in the other things

happening at about the same time. For this to work, though, you need enough system-wide
information.

PS:

data.
Astronomers seem to have have a different philosphy from engineers alrout modeling

WI: How can you quantify the quality of your data, or the quality of the expert giving

you the training data? Who's driving whom when the expert and the end user are largely
the same?

R.S: I would propose looking, not for major applications, but small applications with

positive value and high likelihood of success.

_-



NASA Workshop on the Automation of Time Series, Signatures, and Trend Analysis

May 12, 1993

Abstract: The Planetary Passage Prediction Project

Silvano Colombano and Nick Groleau

Artificial Intelligence Research Branch
NASA Ames Research Center

We have recently started an effort aimed at discovering distant

planetary systems from the observation of light fluctuations of their

central star. The project is called Planetary Passage Prediction
Project, or PPPP, or P4 for short. The idea is to build a predictor

for the emitted light time series and recognize significant deviations

of the data as planet phenomena. In a first effort, we will focus

on ACRIM (Active Cavity Radiometer Irradiance Monitor) data obtained
from the SMM (Solar Maximum Mission) satellite in 1989.

We envision making use of the cascade-correlation artificial neural network

algorithm to build and train the predictor network. The input data requires
a time delay line from the time series. The output is a single predicted data

point. Cascade-correlation is a technique that provides for the

automatic generation of hidden units in multiple layers arranged
in a cascade of connections.

More advanced work will include attempts at modifying the algorithm to

accomodate on-line learning and automatic determination of the number of input
units and their relative time delay. We are working closely with the

FRESIP project which is trying to secure funds to build a satellite

telescope for planet discovery.

_a.t.ota



NonlinearRegressionin Time Seriesfor ShortTermPrediction

RichardKraft

Ames Research Center

Following the work of Ruelle, Collette, Eckmann, and others, techniques

are available to make predictions in the short term for time series
associated with deterministic chaotic systems. Although no universally

accepted definition of "chaotic system" exists, there is widespread agreement
that a necessary condition is the existence of a positive Lyapunov

exponent for the system, which essentially indicates that there is
extreme sensitivity to a set of initial conditions of full measure.

This technique posits the existence of an attractor in a phase

space of time delays. The attractor is usually fractal in nature.

There is mounting evidence that the dimension of the attractor
is closely related to the expected predictive accuracy.

Of central importance is the ability to accurately estimate hundreds
or thousands of parameters specifying the attractor in a tractable manner.

Current research is being devoted to this problem and its effective

application in the above context. Another focus of research concerns

combining stochastic modeling with nonlinear deterministic modeling,

as many systems exhibit a range of behaviors. Techniques are
being developed to identify the mode of behavior and to regulate the

forecasting technique accordingly.

oXXo7



Grammar Induction as a Mechanism

for Sequence Analysis

Kevin Thompson
KTHOMPSO_PTOLEMY.AIIC.NASA.GOV

April 9, 1993

The task of "supervised learning" has dominated research in empirical ma.

chine learning for many years. Supervised learning systems acquire rules from

training examples labeled with a special class attribute. These learned rules, or

concepts, can then be used to elaasi[y test instances.

A major limitation of most systems for supervised learning is their focus on
fixed attribute-value languages; very few systems are able to learn from struc-

tured data, or data with differing numbers of attributes. One obvious approach

to learning from sequential data is to learn formal grammars. Context-free

grammars (CFGs) have the potential of being more expressive than Markovian

models, which are essentially probabflistic versions of the less-powerful class of
regular expression languages or finite-state machines. Grammar induction is

typically applied to sequential domains - e.g. ones with consecutive states, but

in which the temporal aspect per 8e is not an issue, like natural languages or

amino acid sequences. However, we believe that grammar induction may be ap-
propriate for certain types of signature analysis; CFGs have the potential both

of giving better predictive accuracy because of their added expressiveness, and
of leading to more understandable rules, because CFGs are often more succinct

than their finite-state machine counterparts.

We have recently begun work on inducing simple context-free grammars from
examples. We are exploring three key issues. Because of the enormous number

of possible grammars from a given set of sentences, effective induction requires

strong constraints on the space of grammars; we are thus exploring structural

constraints on instances. We are investigating better evaluation functions; ear-

lier work typically evaluates grammars based on either their size (simplicity)
or their ability to parse sentences, but little work uses both in any coherent

way. An evaluation function based on the minimum description length (MDL)
principle should give better guidance in search for the best grammar. Lastly, f

we are experimenting with probabilistic versions of context-free grammars, as
"all-or-none" rules have limited applicability in many natural domains.



Dynamic System Monitoring using Pattern Recognition
and Hidden Markov models

Padhraic Smyth
JPL

Conventional fault detection and diagnosis techniques rely on relatively

exact models of the system being monitored being available. In practice it

is not unusual that there is no accurate system model available a priori due

to the fact that the real system is complex and non-linear. Examples

of such systems are the large 70m and 34m ground antennas in the Deep

Space Network (DSN)(designed and operated by JPL for NASA). There is significant
interest in both maintaining the reliability of these antennas as they become

older and in improving their performance as deep space communication

moves to higher frequencies (from S,X-band to Ka-band) and longer
duration planetary missions become common.

In this talk I describe recent work at JPL on developing adaptive

methods for online monitoring of DSN antenna pointing systems. The methods

rely on the use of time series models, pattern recognition, and Hidden
Markov models. Standard autoregressive (AR) time series models are fit to

the sensor data in real-time. Changes in the values of the AR coefficients

are then detected by a pattern recognition component which generates
posterior probabilities that the system is in a particular state given

the data observed in that window. Finally, a hidden Markov model (HMM) is

used to integrate the state probabilities over time, thus providing
temporal context.

The pattern recognition model is trained in advance using available

system data and the HMM component is specified based on prior knowledge
of system failure rates. Field tests to date indicate that the overall

model has both rapid detection capabilities and excellent resistance

to false alarms. Ongoing work involves the use of density estimation

methods to detect novel states which have not been predicted in advance,

and the use of Bayesian methods to adapt both the parameters and the
structure of the overall model in real-time. The model is generally

applicable to monitoring of any dynamic system where no accurate system

model is known, but where training data from the system is available
a priori.
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